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Abstract: Prior vaccination can alternately enhance or attenuate influenza vaccine immunogenicity
and effectiveness. Analogously, we found that vaccine immunogenicity was enhanced by prior
A(H3N2) virus infection among participants of the Ha Nam Cohort, Viet Nam, but was attenuated by
prior vaccination among Australian Health Care Workers (HCWs) vaccinated in the same year. Here,
we combined these studies to directly compare antibody titers against 35 A(H3N2) viruses spanning
1968–2018. Participants received licensed inactivated vaccines containing A/HongKong/4801/2014
(H3N2). The analysis was limited to participants aged 18–65 Y, and compared those exposed to
A(H3N2) viruses circulating since 2009 by infection (Ha Nam) or vaccination (HCWs) to a reference
group who had no recent A(H3N2) infection or vaccination (Ha Nam). Antibody responses were
compared by fitting titer/titer-rise landscapes across strains, and by estimating titer ratios to the
reference group of 2009–2018 viruses. Pre-vaccination, titers were lowest against 2009–2014 viruses
among the reference (no recent exposure) group. Post-vaccination, titers were, on average, two-fold
higher among participants with prior infection and two-fold lower among participants with 3–5 prior
vaccinations compared to the reference group. Titer rise was negligible among participants with
3–5 prior vaccinations, poor among participants with 1–2 prior vaccinations, and equivalent or
better among those with prior infection compared to the reference group. The enhancing effect of
prior infection versus the incrementally attenuating effect of prior vaccinations suggests that these
exposures may alternately promote and constrain the generation of memory that can be recalled by a
new vaccine strain.

Keywords: influenza; vaccination; infection; immunogenicity; antibodies; pre-existing immunity; memory

1. Introduction

Influenza viruses can evolve relatively rapidly because viral RNA replicates without
proofreading. Substitutions that increase virus fitness or facilitate escape from host immune
responses are positively selected. Influenza virus hemagglutinin (HA) mediates infection
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and accumulates mutations faster than other influenza virus proteins due to selection
pressure from HA-reactive antibodies that block infection [1–3]. A key consequence of
HA antigenic evolution, termed antigenic drift, is that influenza viruses re-infect people
throughout their lives. Therefore, influenza vaccines are frequently re-formulated to match
circulating strains, and re-administered [4]. Of note, influenza A(H3N2) viruses have
undergone more antigenic change than A(H1N1) viruses [5]. Accordingly, recent studies
estimate that re-infection occurs more frequently for A(H3N2) compared to A(H1N1)
viruses [6].

The effect of adaptive immune memory on responses to variant viruses has been
debated since the 1950’s, when Davenport and others showed that exposure to new in-
fluenza virus strains induced higher antibody titers against priming strains that were
typically encountered early in life [7–9]. From these studies, Francis formulated the “origi-
nal antigenic sin” hypothesis, which postulates that responses against minimal epitopes
that are preserved from past strains are preferentially recalled (back-boosted) at the ex-
pense of generating responses against epitopes that are unique to the new strain [10].
This was considered “sinful” because the cross-reacting antibodies induced had relatively
poor neutralizing titers against the new strain [10,11]. Contemporary studies have since
demonstrated that the extent of antibody back-boosting induced by new A(H3N2) strains
diminishes with increasing temporal and antigenic distance from the new strain, even
though back-boosting can extend to strains encountered early in life [12–14].

In the 1970s, Hoskins et al. observed that boys vaccinated for the first time had
lower A(H3N2) virus attack rates than boys who had also been vaccinated in the prior
year(s) [15,16], raising concern that pre-existing immunity may attenuate vaccine-induced
protection against influenza illness. However, Hoskins et al. also observed that A(H3N2)
attack rates were lower among boys who had prior A(H3N2) infection, and concluded
that infection induced greater immunity than vaccination [15,16]. Subsequent studies
have confirmed that repeated annual administration of influenza vaccine can be associ-
ated with reduced vaccine effectiveness (VE) [17–20], and reduced antibody titer and titer
rises [21–26]. Repeated vaccination has mainly been associated with the attenuation of
VE and immunogenicity against A(H3N2) viruses rather than against A(H1N1) and B
viruses [27]. This agrees with consistent reports, across years and geographic regions of
poor VE (<40%) against influenza A(H3N2) compared to A(H1N1) and B viruses [19,27–36].
The exception being that estimated VE against A(H3N2) may be higher in young chil-
dren [34,37], who will have less pre-existing immunity. These phenomena indicate that
pre-existing immunity may limit the capacity for vaccination to update immunity against
new A(H3N2) strains.

Effects of prior vaccination on VE have varied between studies [27] and seasons [38,39].
The antigenic distance hypothesis, supported by mathematical modeling, predicts that a
prior vaccine will negatively interfere with a current vaccine when the antigenic distance
between successive vaccine strains is small, and that this will attenuate protection when
the antigenic distance between the vaccine and subsequent epidemic strains is large [38,40].
The antibody focusing hypothesis suggests that recalled memory B cells competitively
dominate and focus responses on epitopes shared with previous strains, which could
attenuate protection if epidemic strains acquire mutations within epitopes upon which
antibodies are focused [41]. Monto et al. have suggested that the term “negative antigenic
interaction” best captures the immune mechanism underlying repeated vaccination effects,
and stressed the need to identify mechanisms that account for negative effects of prior
vaccination versus potentially positive protective effects of prior infection [42].

In 2016, we conducted a study among 100 vaccine-naïve adults who had participated
in influenza surveillance for nine years as part of the Ha Nam community household
cohort in Viet Nam [14]. Recent A(H3N2) virus infection was associated with substantially
and significantly reduced detection of symptomatic A(H3N2) infection in the season after
vaccination [14]. This corresponded to greater antibody responses against A(H3N2) viruses
among vaccinees who had recent infection [14]. In the same year, and using the same
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vaccine formulation, we also conducted a study among 157 Australian healthcare workers
(HCWs), with varying prior exposures to vaccination, but unknown prior exposures to
infection [43]. Vaccine-naïve HCWs and those who had been vaccinated only once before
demonstrated greater post-vaccination responses against the A(H3N2) component of the
vaccine than frequently vaccinated (3+ prior vaccines) HCWs [43]. Here, we have combined
these studies to compare titers across 35 A(H3N2) antigens spanning 1968 to 2018 among
participants with prior exposure through infection versus vaccination.

2. Materials and Methods
2.1. Vaccination Study Designs

The Ha Nam Cohort and the vaccination sub-study have been described previ-
ously [14,44]. In brief, 945 members of 270 households commenced participation in active
surveillance for influenza infection causing RT-PCR-confirmed illness or seroconversion
without illness in December 2007. In November 2016, 100 participants aged at least 18 Y,
who had participated in all investigations to detect laboratory confirmed influenza infec-
tion received Southern Hemisphere trivalent inactivated split egg-grown influenza vaccine
(Vaxigrip, Sanofi). This included 28 who lacked A(H3N2) virus infection since 2007, and
72 of similar sex and age who had at least one A(H3N2) virus infection. Venous blood
was collected before and at multiple post vaccination time points, including days 21 and
280–282. The study was approved by ethics committees of the University of Melbourne
(1646470), the National Institute of Hygiene and Epidemiology in Viet Nam (IRB-VN01057
– 08/2016), and the Oxford Tropical Medicine Research Ethics Committee (30–16).

The HCW vaccine study has been described previously [43]. In brief, HCWs aged
18-65 years were recruited in April 2016 when attending the staff influenza vaccination
clinic of the Royal Melbourne Hospital, Victoria, Australia to receive the 2016 Southern
Hemisphere quadrivalent inactivated split egg-grown influenza vaccine (Fluarix Tetra 2016,
Glaxo Smith Kline). Participants were asked if they had been vaccinated against influenza in
the preceding 5 years since 2011. Venous blood was collected prior to vaccination and post
vaccination on days 21–28 and 210–227. The study was approved by the human research
ethics committee at the Royal Melbourne Hospital (reference number: HREC/16/MH/11).

2.2. Definition of Prior Exposure Groups, and Criteria for Inclusion in Each Group

Four groups were defined based on prior exposure by infection or vaccination to
A(H3N2) viruses going back to A/Perth/16/2009-like viruses included in the 2011 vaccine
(Table 1). These groups were referred to as “no recent exposure”, “recent infection”,
“1–2 prior vaccinations” and “3–5 prior vaccinations”. Ha Nam cohort participants were
all vaccine-naïve, so were assigned to the “no recent exposure” group if A(H3N2) virus
infection was not detected since December 2007, or to the “prior infection” group if infection
was detected since 2009. HCWs were assigned to prior vaccination groups based on the
number of times they were vaccinated in the preceding 5 years (HCWs) since 2011. HCWs
who had no vaccinations in the preceding 5 years were excluded because it was not known
if they had recent infection.

Inclusion and exclusion criteria for this analysis are shown in Figure 1. Participants
who developed ILI with A(H3N2) infection confirmed by RT-PCR in the season after
vaccination were excluded from both comparison groups because infection was expected
a priori to lead to higher post-season titers, hindering interpretation. Ha Nam vaccinees
were excluded if aged > 65 Y. Further, we excluded two participants who were last infected
in 2008 with an A/Brisbane/10/2007-like (H3N2) virus in order to match the range of
strains that HCWs were exposed to by vaccination between 2011 and 2015. HCWs were
excluded if they did not complete the study, if vaccination histories were incomplete, or if
insufficient sera remained for titration against 35 viruses. HCWs who had less than five
prior vaccinations were under-represented, and all were selected. A similar number of
HCWs with five prior vaccinations were selected randomly after stratifying by sex in order
to obtain similar sex ratios to the other exposure groups.
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Table 1. Viruses used for antibody assays.

Year Virus Designation a Abbreviation Passage b Vaccine Year c

1968 A/Bilthoven/16190/68 Bi68 X, MDCK3 -
1972 A/Bilthoven/21793/72 Bi72 MDCK3 -
1975 A/Bilthoven/1761/76 Bi76 MDCK3 -
1977 A/Bilthoven/2271/76 Bi76b X, MDCK3 -
1979 A/Netherlands/233/82 Ne82 tMK1, MDCK4 -
1982 A/Philippines/2/82 Ph82 MDCKX, 2 -
1987 A/Netherlands/620/89 Ne89 X, tMK1, MDCK3 -
1989 A/Netherlands/823/92 Ne92 X, MDCK3 -
1993 A/Netherlands/179/93 Ne93 X, MDCK3 -
1995 A/Netherlands/178/95 Ne95 293T, MDCK4 -
1997 A/Tasmania/1/97 Ta97 MDCK7 -
1999 A/Netherlands/301/99 Ne99 MDCK5 -
1999 A/Townsville/2/99 Tv99 MDCK2, SIAT1 p -
2002 A/Philippines/472/02 Ph99 MDCK6 p -
2002 A/Fujian/411/02 Fu99 X, MDCK9, SIAT1 -
2004 A/Victoria/511/04 Vi04 MDCKx, 2 p -
2004 A/New York/55/04e NY04e SPFCK3, Egg6 2006
2005 A/Thailand/409/05 Th05 P2, MDCK2 p -
2005 A/Wisconsin/67/05e Wi05e SPFCK3, Egg8 2007
2007 A/Brisbane/10/07 Br07 MDCKX, 5, SIAT1 p -
2007 A/Uruguay/716/07e Ur07e SPFCK1, Egg5 2008, 2009
2009 A/Perth/16/09 Pe09 MDCKX, 5 -
2009 A/Perth/16/09e Pe09e Egg6 2010, 2011, 2012
2011 A/Victoria/361/11 Vi11 MDCK2, SIAT1 p -
2011 A/Victoria/361/11e Vi11e Egg6 2013
2012 A/Texas/50/12 Tx12 C2, MDCK6, SIAT1 -
2012 A/Texas/50/12e Tx12e Egg5, Egg2 2014
2013 A/Switzerland/9715293/13 Sw13 SIAT, SIAT8 -
2013 A/Switzerland/9715293/13e Sw13e Egg6 2015
2014 A/Michigan/15/14 Mi14 MDCK1, SIAT6 -
2014 A/New Caledonia/104/14 NC14 MDCK1, SIAT4 p -
2014 A/Hong Kong/4801/14e HK14e Egg7 2016
2016 A/Newcastle/30/16 Nc16 SIAT1, SIAT4 -
2017 A/Kansas/14/17 Ka17 SIAT3, SIAT1 -
2018 A/Brisbane/60/18 Br18 SIAT3 -

a: The suffix e is used to indicate viruses that were grown in eggs. b: Passage cell type followed by number
of passages where C = undefined cell line; MDCK = Madin Darby Canine Kidney cell line; SIAT = human 2,6-
sialtransferase transfected MDCK cells; P = undefined passage; SPFCK = chicken kidney cell; X = unknown; super-
script p = plaque selected. c: Year in which a strain was included in the Southern Hemisphere Influenza Vaccine.

Figure 1. Participant inclusion and exclusion criteria. Shaded boxes indicate participants that met
each of the inclusion criteria considered; clear boxes indicate those that were excluded. Blue shaded
boxes indicate the four groups analyzed in this study.
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2.3. Viruses

Viruses that circulated between 1968 and 2018 (n = 35) were propagated in mam-
malian cell lines and/or in eggs for use in serology. Where necessary, viruses were plaque-
selected on Madin Darby Canine Kidney cells that had been transfected with human
2,6-sialtransferase (MDCK-SIAT cells) to produce stocks that lacked NA T148X or D151X
substitutions, which can reduce the sensitivity of the assay for detecting HI antibodies [45].
Virus HA genes were sequenced and aligned with vaccine strains and strains circulating in
the Ha Nam Cohort during the study period (Figure S1). A(H3N2) strains included in vac-
cines between 2011–2016 (Table 1) were further scrutinized for substitutions at 131 amino
acid positions that have been associated with antigenic variation and assigned to antigenic
sites [46] (Figure S2).

2.4. Serology

Sera from both studies were tested in hemagglutination inhibition (HI) assay against
35 A(H3N2) viruses (Table 1). Viruses were selected to represent each main antigenic or
genetic cluster detected between 1968, when A(H3N2) emerged in humans, and 2018, four
years after the strain included in the 2016 vaccine (A/Hong Kong/4801/2014). HI assays
were performed according to WHO Global Influenza Surveillance Network protocols [47],
with the exception that the red blood cell percentage and volume per well were 1% and
25 µL, respectively. Quality controls were performed for each new batch of red blood cells
used to enable comparison of titers across multiple viruses and time points. HI titer reading
was automated using a CypherOne reader (InDevR, Inc., Boulder, CO 80301).

2.5. Analysis

To compare antibody responses across strains, and between prior exposure groups,
titers were presented as fitted landscapes across strains, and as averages for sets of strains,
focusing on strains circulating since 2009. Generalized additive models (GAMs) were
used to fit log2 titers and log2 titer differences (geometric ratios) between timepoints
against 35 A(H3N2) viruses arranged temporally. Fitted titer estimates were presented with
95% confidence intervals. An antibody landscape package (https://github.com/acorg/
ablandscapes, accessed on 22 August 2021), which uses Lowess models, was used to fit
log2 titers against viruses arranged on a two-dimensional map of antigenic distances, and
present estimated titers as contours [13]. Strains that circulated prior to a participants’ birth
year were excluded to reduce the impact of age on landscapes. Birth years ranged from
1950 to 1996, meaning that up to 10 strains circulating between 1968 to 1995 could have been
excluded. We used the GAM function from the R package mgcv and accounted for repeated
measurements on each individual through specification of a random effect [48]. To further
compare effects of prior vaccination versus prior infection, the no prior exposure group
was assigned as a reference, and the titer ratios were estimated for each prior exposure
group compared to the reference. Ratios were estimated using the linear model function
(titre_ratio~lm(log(titre)~exposure_group) of the tidyverse package in R. All plots were
generated with the ggplot2 package in R [49].

3. Results
3.1. Characteristics of Participants in Each Prior A(H3N2) Exposure Group

Eighty-six of 100 Ha Nam vaccinees, and 41 of 112 eligible HCW vaccinees were
included in this analysis (Figure 1). HCWs included 13/13 with 1–2 prior vaccinations; 8/8
with 3–4 prior vaccinations; and 20/91 with 5 prior vaccinations. These participants were
classified according to exposure to A(H3N2) viruses by infection or vaccination since 2009
(Figure 1, Table 2). Sex and age distributions, as well as sampling times, were similar across
exposure groups (Table 2).

https://github.com/acorg/ablandscapes
https://github.com/acorg/ablandscapes
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Table 2. Age and sex of participants in each prior exposure group.

Prior A(H3N2) Exposure Group

No Recent
Exposure

Prior
Infection

1–2 Prior
Vaccinations

3–5 Prior
Vaccinations

Study Ha Nam Ha Nam HCW HCW
N 22 64 13 28

Sex, F:M (%F) 14:8 (64) 41:23 (64) 9:4 (69) 18:10 (64)
Age Y, median (range) 48 (23–64) 48 (20–63) 37 (24–56) 41 (24–65)

Sample Day, median (range)
Post-vaccination 21 21 21 (21–27) 22 (20–28)

Post-season 282 (280–282) 282 (280–282) 223 (210–225) 224 (210–227)

3.2. Vaccine-Induced Antibody Responses against A(H3N2) Viruses, Comparing Participants with
Prior Infection versus Vaccination to Those Lacking Recent Exposure

Compared to participants with no recent exposure, participants with prior vaccination
had higher pre-vaccination antibody titers against 2009–2014 strains, approximating strains
present in prior vaccines (Figures 2A,B, S1a). Pre-vaccination titers were higher against
a greater range of strains, extending back to circa 2002, among participants with prior
infection (Figure 2A). Titers against strains circulating before 2000 were not consistently
different between prior exposure groups (Figure 2A).

Figure 2. Antibody landscapes induced by vaccination differ between groups defined by prior
exposure to A(H3N2). Participants were grouped according to recent prior exposure to A(H3N2)
by infection or vaccination (legend), then Generalized Additive Models (GAMs) were used to fit HI
titers across 35 viruses. (A), Pre-vaccination titer model, (C), Post vaccination titer model, (D), Pre- to
Post-vaccination titer ratio model, (E), Post-season titer model, (F), Pre-vaccination to Post-season
titer ration model. Shading indicates 95% confidence intervals for the models. Numbers/group
are presented in Table 2. Dashed vertical lines indicate the vaccine strain. Dashed horizontal lines
indicate sero-positive or sero-conversion thresholds. (B), titers averaged against 2009 to 2018 viruses
that were cell-grown or egg-grown are presented as GMTs for each time-point and prior exposure
group. Error bars represent 95% confidence intervals.
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Post vaccination, a clear hierarchy emerged, with titers against strains spanning
2009–2018 being higher among participants with prior infection, and lower among those
with 3–5 prior vaccinations compared to participants with no recent exposure (Figure 2B,C).
Participants with 1–2 prior vaccinations had intermediate post-vaccination antibody titers
against recent strains, which did not exceed the titers of participants with no recent exposure.
These trends reflected titer rise, which was negligible among participants with 3–5 prior
vaccinations and relatively poor among participants with 1–2 prior vaccinations compared
to those with no recent exposure (Figure 2D).

Post-season titers remained relatively high among participants with prior infection,
but not among those with prior vaccination compared to the group with no recent exposure
(Figure 2E). This reflected better maintenance of titer rise from pre-vaccination levels among
participants with prior infection, but poorer maintenance among participants with prior
vaccination, compared to those with no recent exposure (Figure 2F). HCWs who developed
ILI in the season after vaccination were excluded from these comparisons. However,
separate analysis of this group showed that infection was substantially more immunogenic
than vaccination, inducing titer rises exceeding four-fold and extending across a broad
range of strains (Figure S3A,B). The average titer rise against cell-grown viruses was notably
poor post vaccination, but exceeded four-fold post season (after infection) (Figure S3C,D),
consistent with the antigenic differences between egg-grown vaccines and circulating
strains and their cell-grown equivalents.

The impact of prior infection versus prior vaccination on vaccine responses was
further examined by assigning the no recent exposure group as a reference and estimating
titer ratios to reference for each prior exposure group. Pre-vaccination geometric mean
titers (GMTs), shown for all groups, were generally lower among the no recent exposure
group (Figure 3A). Accordingly, pre-vaccination titer ratios to reference exceeded one
for all viruses for the prior infection group, and for a narrower range of viruses for the
prior vaccination groups (Figure 3B). Post vaccination, titer ratios for most viruses were
similar to pre-vaccination levels for the prior infection group, but had decreased for the
prior vaccination groups, falling substantially below one for participants with 3–5 prior
vaccinations (Figure 3C). Titer ratios for A/Victoria/361/2011 (Vi11) were higher among
groups with prior exposure at all time points, indicating that antibodies may be particularly
well maintained and back-boosted against this virus. Post season, the prior infection group
maintained high ratios, the ratios for the 3–5 prior vaccination group were still largely
below 1, and the 1–2 prior vaccination group appeared to maintain titers no worse or better
than the no recent exposure reference group (Figure 3D).

The combined data indicate that the immunogenicity of the 2016 Southern Hemisphere
vaccine against A(H3N2) viruses was enhanced by recent infection but attenuated by annual
administration (3+ years) of vaccines containing strains similar to those causing infection.
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Figure 3. Recent strain antibody titers of groups with documented prior exposure to A(H3N2)
compared to a reference group with no recent exposure. Ha Nam Cohort participants who lacked
recent A(H3N2) exposure were assigned as the reference group. Pre-vaccination titers against
A(H3N2) viruses are shown for each prior exposure group in (A), and are presented as ratios
compared to the reference group in (B). Post vaccination and Post season ratios to reference group are
presented in (C) and (D). Numbers per group are given in Table 3. Results are presented as geometric
mean titers (A) or as estimated mean ratios to reference (B–D) with 95% confidence intervals. The
red shaded panel indicates the current vaccine strain.
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Table 3. Antigenic site variation among A(H3N2) strains in vaccines from 2011 to 2016.

Amino Acids Substituted at Least Once by Antigenic Site and Position a

Vaccine Site A Site B Site C Site D E

Year Strain 138 140 142 144 145 128 159 186 194 198 45 48 278 311 3 96 212 214 219 62

2016 HK14e A I R S S T+ Y G P S N I K H I S A I S E
2015 Sw13e S R G N+ S A S V L S N I K Q L N A I Y E
2014 Tx12e A I R N+ N N F V L P N I K Q L N A I F E
2013 Vi11e A I R N+ N T+ F V L S N I N Q L N A I X E
2011/12 Pe09e A I R K− N T+ F G L A S T N Q L N T S S K

a: Amino acids that differ from the prior vaccine strain are shaded yellow, while those that differ from the
prevailing 2016 vaccine strain are colored red; + indicates introduction of a potential glycosylation site.

3.3. Investigation of Antigenic Site Substitutions across Vaccine Strains and the Potential for
Antibody Focusing

The antibody focusing theory suggests that memory B cells against epitopes that are
retained from past strains are recalled, and competitively dominate vaccine responses so
that memory is not induced against variant epitopes [41]. The number of antigenic site po-
sitions of HA that differed between each prior vaccine strain from 2011 to 2015 and the 2016
vaccine strain, A/Hong Kong/4801/2014 (HK14e) ranged from 10 for A/Victoria/361/2011
(Vi11e) to 14 for A/Perth/16/2009 (Pe09e) (Table 3, Figure S2). By comparison, 20 antigenic
site positions were substituted across vaccine strains used between 2011 and 2016 (Table 3).
Hence, the pool of vaccine-reactive memory may decline with each new vaccine strain
encountered if memory is not induced against antigenic sites bearing substitutions. We
investigated whether successive exposure to different vaccine strains affected antibody
titer and titer rise distribution across a two-dimensional map of virus antigenic distances
(Figure 4). Titer/titer rise distribution differed between HCWs who had one versus two
prior vaccinations, indicating that the pool of A/Hong Kong/4801/2014 (HK14) vaccine-
reactive memory may have been altered by exposure to A/Texas/50/12 (Tx12) prior to
A/Switzerland/9715293/2013 (Sw13) vaccine. Titer distribution differed again among
HCWs who had five prior vaccinations.
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Figure 4. The strain coverage of antibodies induced by vaccination varies with vaccination history.
Estimated antibody titer and titer rise landscapes are presented as contours over a two-dimensional
map of A(H3N2) virus antigenic distances. Participants are grouped by number of prior vaccinations
(rows). Panels show fitted titers Pre-Vaccination (A), Post-Vaccination (B), or Post-Season (C), and
titer ratios Post-vaccination (D) or Post-Season (E). Each circle represents a virus on the map, colored
by (sub)clade, assigned since 2009. Abbreviated virus names are shown in panel (E). Solid circles
indicate viruses against which participant sera were titrated; other viruses are indicated by open
circles. Model estimates were generated from 8 HCWs with 1 prior vaccination, 5 with 2 prior
vaccinations, and 20 with 5 prior vaccinations.
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4. Discussion

The analysis presented here shows that the immunogenicity of inactivated split egg-
grown influenza vaccine against A(H3N2) viruses was enhanced by recent A(H3N2) virus
infection but attenuated by recent vaccination. These findings are reminiscent of Hoskins’
studies, as described in the introduction [16], and with animal models, which indicate
that infection provides more potent priming than vaccination [50–52]. Additionally, a
recent study from Japan found that the negative effect of prior vaccination on VE can be
mitigated by prior infection [53]. Most repeat vaccination studies, including the current
study, involve inactivated egg-grown virus vaccines. Inactivated cell-grown, recombinant
HA, and adjuvanted vaccines have been developed in recent years, and early evaluations
indicate that they are more immunogenic [54–58] and effective [59–61] than standard egg-
grown virus vaccines. It will be important to determine whether these vaccine formulations
can overcome or alleviate the attenuating effects of repeated vaccination. While vaccine
effectiveness against A(H3N2) viruses is poor and attenuated by prior vaccination, current
estimates suggest that vaccination in the current and prior season affords better protection
against A(H3N2) than being vaccinated in the prior season only [62]. This suggests that
it is better to vaccinate annually than in alternate years. However, there have been no
formal comparisons of VE among people vaccinated in alternate versus successive years to
determine whether there is any benefit to protection in the vaccinated years, and whether
this outweighs the increased risk of infection in unvaccinated years. Additionally, the
results presented here indicate that vaccine immunogenicity was particularly poor in
people who had been vaccinated in three to five, as opposed to one to two, prior years,
indicating a need to determine the impact of multiple years of vaccination on VE.

The findings presented here suggest that existing memory (B cell) responses induced
by infection enhance vaccine immunogenicity, and in turn, that repeatedly vaccinated indi-
viduals lack memory responses that cross-react with the vaccine antigen. Several studies
have indicated that, similar to antibody responses, B cell responses decline with repeated
annual vaccination [21,22,63]. Some suggest that existing antibodies may sequester (mask
or clear) antigens and thereby dampen adaptive immune cell activation [40,63]. How-
ever, poor vaccination responses were not associated with high pre-vaccination antibody
titers in the present study. Recent clinical trials demonstrate that inactivated influenza
vaccines are immunogenic and effective in previously-naïve infants [64–67], indicating
that these vaccines can prime naïve B cells. However, memory B cells are intrinsically
programed to out-compete naïve B cells upon B cell receptor engagement [68–70], and it
has been proposed that this could account for the observation that antibody responses to
A(H1N1pdm09) vaccines were highly focused on epitopes shared with previously encoun-
tered A(H1N1) viruses in selected age groups [41,71–73]. Similarly, it was speculated that
vaccination in the 2018/19 season was less effective against clade 3c3a A(H3N2) viruses in
persons born before 1983 because HA S159T/Y substitutions emerged in 1983 and have
been retained in subsequent strains, except those belonging to clade 3c3a [32,35]. It is
plausible that responses diminish with repeated vaccination due to antigenic change across
vaccine strains, in combination with competitive memory dominance. While memory may
become limited against variant-neutralizing antibody epitopes with repeated vaccination,
memory against more conserved non-neutralizing epitopes could be a source of substantial
competition [74,75].

Direct comparisons of immune responses induced by infection and vaccination indi-
cate that infection is more immunogenic. Specifically, A(H3N2) infection has been shown to
induce more cross-reactive and less clonally expanded anti-hemagglutinin antibodies than
influenza vaccination [75,76]. Infection also induces higher frequencies of CD4+ T cells
with increased functional capacity than are induced by inactivated vaccine [77]. While the
broader back-boosting capacity of infection has been interpreted to indicate that infection
is a more potent driver of original antigenic sin than vaccination [75,78], this does not
translate to antibody responses. It has been reported that infection promotes the maturation
of memory B cell affinity against the HA head of infecting A(H3N2) strains [78]. Adjuvants
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increase the capacity of inactivated vaccine to induce naïve B cells and reduce the effects of
prior vaccinations [79]. It is highly plausible that infection will induce greater naïve B cell
differentiation than vaccination with inactivated virus because of greater innate immune
stimulation [80] and antigen retention so that naïve B cells can be engaged after the memory
B cell response starts to contract [81].

This study had several limitations. Sample sizes were small, particularly for HCWs
who had less than five prior vaccinations. The effects of prior infection versus vaccination
reported here could be biased by ethnic and socioeconomic differences between community
members from Viet Nam and HCWs from Australia. However, we could detect effects
of vaccination history within the HCW cohort, consistent with our previous studies [25],
and with studies showing effects on VE in various populations and countries [17,18,53].
HCW infection histories were unknown, so we were unable to account for effects of prior
infections, which may have alleviated the attenuating effects of prior vaccination [53].
These limitations could be remedied by the longitudinal study of other populations who
have more varied uptake of the influenza vaccine, and who are monitored for clinical and
sub-clinical influenza infection.

5. Conclusions

In conclusion, the results presented here indicate that recall of existing memory can
enhance antibody titers induced by inactivated egg-based influenza vaccines, but may con-
currently limit the generation of memory against variant epitopes of vaccines, accounting
for the detrimental effect of repeated vaccination. Direct examination of how exposure
history affects the magnitude and repertoire of memory B cells induced by different vaccine
formulations will be important to inform the development of vaccines that provide better
protection against A(H3N2) viruses.
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